
Journal of Global Optimization 8: 393-411, 1996. 393
~) 1996 Kluwer Academic Publishers. Printed in the Netherlands.

An Improved Univariate Global Optimization
Algorithm with Improved Linear Lower Bounding
Functions *

X I A O J U N W A N G t and T S U - S H U A N C H A N G a
1 Applied Mathematics Group, Department of Mathematics, University of California, Davis, CA
95616, U.S.A.
2 Department of Electrical and Computer Engineering, University of California, Davis, CA 95616,
U.S.A.

(Received: 7 April 1994; accepted: 26 September 1995)

Abstract. Recently linear lower bounding functions (LLBF's) were proposed and used to find e-
global minima. Basically an LLBF over an interval is a linear function which lies below a given
function over the interval and matches the function value at one end point. By comparing it with
the best function value found, it can be used to eliminate subregions which do not contain e-global
minima. To develop a more efficient LLBF algorithm, two important issues need to be addressed:
how to construct a better LLBF and how to use it efficiently. In this paper, an improved LLBF for
factorable functions over n-dimensional boxes is derived, in the sense that the new LLBF is always
better than those in [3] for continuously differentiable functions. Exploration of the properties of the
LLBF enables us to develop a new LLBF-based univariate global optimization algorithm, which is
again better than those in [3]. Numerical results on some standard test functions indicate the high
potential of our algorithm.

Key words: univariate global optimization, linear lower bounding functions, LLBF methods.

1. Introduction

In r ecen t years , a var ie ty o f m e t h o d s for so lv ing g loba l op t imiza t ion p r o b l e m s h a v e

b e e n p r o p o s e d [5, 6, 11]. O n e c lass o f de te rmin is t i c app roaches , wh ich is ca l led
c o v e r i n g m e t h o d s , e m e r g e d f r o m a natural s t ra tegy to find a g loba l m i n i m u m for

sure.
R e c e n t l y the c o n c e p t o f l inear l ower bound ing func t ions (L L B F ' s) was intro-

d u c e d to d e v e l o p g loba l op t imiza t ion a lgor i thms [1,2, 3].** F o r un ivar ia te p r o b l e m s

an L L B F 1 (x) o f a g iven ob jec t func t ion f (x) on an in terva l [a~ b] is a l inear under -
e s t ima t ing func t ion o f f (x) w h o s e funct ion va lue at one end po in t m a t c h e s that
o f the g i v e n funct ion . N o t on ly can L L B F ' s for a large class o f func t ions such as
f ac to rab le func t ions be cons t ruc ted , but a lso they can be eas i ly u sed to e l imina te

* This work was supported in part by VLSI Technology Inc. and Tyecin Systems Inc. through the
University of California MICRO program with grant number 92-024.

** An LLBF was called a linear lower bound in [1, 2, 3] Since an LLBF is actually a function, its
new name is more appropriate.

394 XIAOJUN WANG AND TS-SHUAN CHANG

subregions not containing e-global minima. These advantages make the LLBF
method a promising approach to global optimization problems.

As mentioned in [3], to guarantee locating a global minimizer or an e-global
one, it is impossible to go through every individual point in practice. The question
then is reduced to how to efficiently cover the feasible region to make such an
evaluation computationally feasible. In this paper, we will develop an improved
global optimization algorithm for univariate problems using LLBF's.

In Section 2 a better LLBF is derived. In section 3 the basic algorithm is
developed. In section 4, the improved algorithm is presented by using the basic
algorithm for the global phase, and integrating it with a newly developed local
minimization algorithm in the local phase. The local minimization algorithm locates
a local minimum with its associated interval, so that the local minimum found is
also a global minimum in the interval found. Section 5 presents the numerical
results. Section 6 is a short discussion.

2. An Improved Linear Lower Bounding Function

Although this paper deals with univariate global optimization and only the uni-
variate LLBF is needed, we do provide the procedure for constructing multivariate
LLBF's, since there is no conceptual difference.

Let f (x) : R n --+ R be a continuous function, and D an n-dimensional box in
R n, i.e.,

D = {x E R n l a (i) <_ x(i) < b(i), i = 1 , - . . , n } .

Let x0 be a vertex of D. As defined in [1, 2], a linear function

(2.1)

l(x) = raT x + r (2.2)

is a linear lower bounding function (LLBF) of f (x) over the box D with the
matching point x0 if

f (x) > l(x), Vx E D, (2.3)

f (xo) = l(xo), (2.4)

Ilmll G, (2.5)

where G is a finite number. A linear upper bounding function (LUBF) is similarly
defined by replacing > in (2.3) by <.

We will use linear bounding function (LBF) to refer to either LLBF or LUBF or
to both. If a bounding function is piecewise linear (convex), it is called a piecewise
linear (convex) bounding function. For univariate problems, the box is reduced to
an interval [a, b]. An LBF is called a right(left) LBF if the right(left) end point is
matched.

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 395

An LBF over other compact regions such as a simplex can be similarly defined.
In fact, the LBF's over simplices have been developed in [2] for those functions
which can be recursively obtained by using the difference of two convex functions
and the composition of monotonic convex functions. In [3], LBF's over boxes were
developed for factorable functions, since many functions are factorable [7]. In this
section we will develop an improved LBF for factorable functions over boxes, in
the sense that it is as good as that in [3] at least for continuously differentiable
functions.

A factorable function is a function of n variables which is generated by first
composing (adding or multiplying) functions of a single variable, transforming
those functions, composing those, transforming a finite number of times [8].
The general factorable function f2v (x) can be expressed as

N - 1 N-1 p

fN(x) =-- ~ TN,p(fp(x)) + ~ ~ UN,p,q(fq(X)) " VN,q,p(fp(x)), (2.6)
p=l p=l q=l

j-1

where
fj(x)=--xj, j = l , . . . , n ,

j-1
fj(x) ~ ~Tj,p(fp(X)) ÷ ~Uj,p,q(fq(X)). ~,q,p(fp(x)),

(2.7a)

(2.7b)

(2.7c)
p=l p=l

j = n + l , . . . , N - 1 ,

and the T's, U's and V's are scalar functions of one variable.
To obtain LBF's for factorable functions, we need to construct LBF's for the

minimum or maximum, or sum of several functions, the composite functions, and
the product functions as in [3]. While the LBF for the minimum or the maximum
of several functions has been developed in [3], we will present a new method to
obtain LBF's for composite and product functions. For completeness, the result for
min or max functions from [3] are presented in Section 2.1. In Sections 2.2 and
2.3, improved LBF's for composite and product functions have been developed.

2.1. LBF'S FOR MIN AND MAX FUNCTIONS

As mentioned, the results in [3] are presented in this subsection for completeness.
Let I k (x) denote the LLBF of fi(x) over the box D with (the matching vertex) x0,
i.e.,

lk(x) _< fi(x), gx E D, (2.8)

II~ (x0) = k(x0) . (2.9)

Define

Iz(x) = rain{ lf,(x), i = 1 , - - . , p }. (2.10)

396 XIAOJUN WANG AND TS-SHUAN CHANG

Denote the n vertices of D adjacent to xo by xl, x 2 , . . . , Xn. Let l:(x) be the
hyperplane passing through the (n + 1) points below,

(xy, ll(xj)), j = 0 , 1 , . . - , n . (2.11)

We then have Lemma 2.1.

LEMMA 2.1. The linear function l i(x) is an LLBF o f f (x) = rrdn{fi(x), i =
1, . . . ,p}.

Sketch o f theproof First, from (2.9), (2.10), and (2.11), we have

If (xo) = It (xo) = min{l A (xo)} = nfin{fi (xo)} = f (xo). (2.12)

Second, from (2.10) and (2.11)

l f (x j) <_ lA(xj) , j = 0, 1 , . . . , n ; i = 1 , . . . , p . (2.13)

It is not difficult to see l: (x) <_ l/i (x) over the box, since a box is a convex set,
and a linear function is convex and is uniquely determined by n + 1 points.

LEMMA 2.2. Let I = { i I f i(xo) = f (xo) }. The function lg(x) is defined by

Ig(x) = ~ Aily,(x), (2.14)
icI

where ~ iEI Ai = 1, Ai >_ O, is an LLBF forthe function

9(x) = max{f i (x) , i = 1 , . . . , m}. (2.15)

The L U B F ' s L f (x) and Lg(x) can be obtained from the LUBF's Lf~ of f i (x)
similarly.

2.2. LBF's FOR COMPOSITE FUNCTIONS

Given the function T(.) : R --+ R and t(.) : R n ~ R, our goal is to find LBF's
for the composite function T(t(x)) over a given box D with the matching vertex
x0. Let It (x) and Lt (x) be the LLBF and LUBF of t(x), respectively. Assume that
t(x) is also bounded by some given numbers at and bt, i.e.,

at <_ t(x) <_ bt, Vx C D. (2.16)

Also assume that two-piece LBF's for T(.) are given; i.e., we have

ll(t), if t e [at, t(x0)],
lT(t) = 12(t), i f t E [t(xo), bt], (2.17)

f Ll(t) , i f t E [at, t(x0)],
LT(t) (2.18) / Lz(t), if t E [t(xo), bt],

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 397

IT(t(xo)) = ll(t(xo)) = 12(t(xo)) = T(t(xo)),

LT(t(xo)) = Ll(t(xo)) = L2(t(xo)) = T(t(xo)).

(2.19)

(2.20)

LEMMA 2.3. Let

l(x) = min{l l(ILl(x)) , I2(1Lz(x))},

r (x) = max{L 1 (Lll(x)), L2(Ll2(x))},

(2.21)

(2.22)

where

A f 1Li(x)
= ~ Lt(x) ,

if li is nondecreasing,
if li is nonincreasing,

(2.23)

z~ f Lt(x) , if Li is nondecreasing, Lli(x)
=], It(x), i fLi is nonincreasing,

(2.24)

i = 1,2.

Then l(x) and L(x) are the piecewise LLBF and LUBF of T(t (z)) over the box D
with the matching corner Xo.

Proof. For the LLBF l(x) it is enough to consider one case; say, for example,
that ll is nondecreasing and 12 is nonincreasing. Then

> lT(t(x)) = ~ ll(t(x)) >_ ll(It(x)), if t(x) E [at, t(x0)] T(t (x)) - [12(t(x)) >__ 12(Lt(x)), if t(x) C It(x0), bt], (2.25)

i.e.,

T(t (x)) >_ min{ll(It(x)), I:(Lt(x))}. (2.26)

Considering other cases similarly we obtain l(x) given by (2.22) and (2.24).
The proof for L(x) is similar.
Note that one-piece LBF's can be constructed from the above piecewise LBF's.

Note also that the LBF's thus obtained are at least as good as those obtained from
[3] for continuously differentiable functions. This can be proved by exhausting all
the possible cases.

2.3. LBF's FOR PRODUCT FUNCTIONS

To find linear bounds for U(u(x)) . V(v(x)) , we can first obtain the LBF's and
estimations of min and max for U(u(x)) and V(v(x)) by using the technique
discussed. Denote the LBF's for U(u(x)) and V(v(x)) by lu(X), Lu(x), Iv(x),
Lv(x) and the estimations of min and max for U(u(x)) and V(v(x)) by ku, Ku,
kv and Kv, respectively,

l~(x) <_ U < Lu(x), (2.27)

398

Iv(x) <_ V < Lv(x), x e D.

k,~ < U <_ K , .

k v < V < K v , x E D .

Thus,

0

0

0

0

and we

XIAO/UN WANG AND TS-SHUAN CHANG

(2.28)

(2.29)

(2.30)

< (U - ku)(V - kv) <_ (Lu(x) - k~)(Lv(x) - kv), (2.31)

< (Ku - U)(Kv - V) < (Ku - lu(x))(Kv - lv(x)), (2.32)

<_ (U - ku)(K~ - V) < (Lu(z) - ku)(Kv - lv(x)), (2.33)

<_ (Ku - U) (V - kv) <_ (Ku - lu(x))(nv(x) - kv), (2.34)

have

kvU + kuV - kukv <_ U V <

Lu(x)Lv(x) + ku(V - Lv(x)) + kv(U - Lu(x)) A= Hi(x), (2.35)

l.u(x)lv(x) + K u (V - lv(x)) + K v (U - lu(x)) A= H2(x), (2.36)

hi(x) ~ Lu(x)lv(x) + k ~ (V - l~(x)) + K v (U - Lu(x)) <_ U V <

kuV + K v U - kuKv, (2.37)

h2(x) ~= L,~(x)L,(x) + K ~ (v - L~(x)) + k~(U - t~(z)) < U V <
K**V + k~U - Kukv. (2.38)

To match the comer zo, we only consider hi (z), ha(x), H i (z) and Ha(z). Also,
denote

ha(x) ~ min{lu(x)Iv(z) , lu(X)Lv(x) ,Lu(z) lv(x) ,Lu(z)Lv(oC)} , (2.39)

H3(x) ~ max{ lu (x) l v (x) , lu (x)Lv(x) ,Lu(x) Iv (x) ,Lu(x)Zv(x)} . (2.40)

We have from (2.27), (2.28) and interval analysis

h3(x) <: UV < H3(x). (2.41)

Let l(x) be the LLBF of max{h l (x) ,h z (x) ,h3 (x) } and L(x) the LUBF of
min{Hl (x) ,H2(x) , H3(x)}. The functions l(x) and L(x) are then the LLBF
and LUBF for U(u(x)) • V(v(x)) with the matching point xo, respectively. The

[MPROVED LINEAR LOWER BOUNDING FUNCTIONS 399

I ! !

z : i z l z z z zv ,,
! ! !

1 I
!
I
I
I

-~,/2', 0 ',• ,3rd2

I ! I

I
!

I
!

| I
12

Figure 1. An LLBF for sine function: case l.

i I

D X

LLBF (or LUBF) for a product of two linear functions, such as lu" Iv, only involves
quadratic terms over a box with two variables, and they can be found rather easily
by matching a two-dimensional point which comes from components of x0. Note
that the LLBF(LUBF) of any one of the hi's (Hi's) is an LLBF(LUBF) of U V.
Using all of them will give us better LBF's. Also note that the LBF's thus obtained
are at least as good as those derived in [3] for any function by direct comparison.

2.4. CONSTRUCTION OF L B F ' S FOR FACTORABLE FUNCTIONS

An LBF library can be built to construct LBF's for factorable functions. In the
library, the function form can be chosen from some commonly used univariate
generic functions, the minimum or maximum of several functions, and function
form in summation, composition, or multiplication. For a given function form f
with a specified interval, the library provides its LLBF(/:), LUBF(L:) , and lower
(upper) bound ely (fly) of the function value over the considered interval, c~y and
flf can be obtained either by the LBF's generated or by interval arithmetic methods
[9]. For a univariate function, o~y (fir) is not less (greater) than the minimum
(maximum) of the LLBF (LUBF) over the given interval.

A final remark on the construction of LBF's is in order here. The LBF construc-
tion for generic functions is done by brute-force methods to exhaust all the possible
cases as in [3]. Let us use the sine function as an example, since the construction
of its left LLBF over [a, b] is typical. Let us divide naturally its basic period into
four subintervals as in Figure 1.

If the two endpoints a and b are in different periods, its left LLBF only depends
on the end point a. For example, if a E I I , then the perfect left LLBF is the tangent
line passing through (a, sin a) along the rightward direction. However, if we have
to find such a tangent line every time, it is computationally a burden. Instead, we
use an imperfect left LLBF which is easy to compute.

Let 11 and 12 denote the tangent lines in Figure 1; their intersection point is A,
which can be calculated in advance and stored. Then the straight line connecting
(a, sin a) and A is a left LLBF.

400 XIAOJUN WANG AND TS-SHUAN CHANG

a

o
|

t ~

t :
0

u !

zz : z l z : zv
o S o

° ! I
• ! I

• i o
• ! !

I t o I I

9)' . , 3 ~
i I O

S O !

13

14
Figure 2. An LLBF for sine function: case 2.

If the interval lies within a single period, the situation is more complicated.
Nevertheless, the fundamental idea of constructing a left LLBF is about the same.
Let m denote the slope of the left LLBF and consider a E III; the scenario is
shown in Figure 2.

Le t /3 be intersection point of the two tangent lines 13 and 14; then

s i n a - s i n b
m = - - - ~ - - - b - - ' i fb E III or {b E / V and sinaa -- bsinb > cosb};

(2.42)

the slope of the line connecting (a, sin a) and B, otherwise.

All the other situations can be done in a similar way as the two representative cases
mentioned.

3. A Univariate Global Optimization Algorithm

The basic way to remove a subregion not containing an e-global solution by
an LLBF can be explained as follows. Let f be the best (the lowest) function
value we have so far, and [z0, zl] C [a, b] is a subregion. Suppose a left LLBF
ll(z) = ml (z - :Co) + f (zo) is available and o~ represents a lower bound of f in

[Xo, Xl],i .e. ,a A= est min f . Obviously, i fml _> O o r a _> f - ~ , t h e n f (z) >> f - e
[x0,xi]

for all z C [zo, xl]. In this case, the whole region [:co, Zl] does not contain e-global
minima and can be thrown away. Otherwise let :c~ be the solution of It (x) = f - e.
We then have z~ C [:co, :cl] due to the construction of c~ as mentioned in Section
2.4. Since f (z) ~ f - e for :c e [:co, :c~)], we can now discard [xo, :c~] and store
[z~, :cz] for further consideration.

To efficiently use the left LLBF over [z0, :cl], it should be stored with the
remaining interval [:c~, :cl], since it is reusable. For example, assume that the left
LLBF lt(z) was generated on the region [x0,:cl] with c~ = est min f , and the

[x0,x,]
subregion [zo, :c~o] was previously discarded for the best function value ford found
at the time when using ll (:c). Suppose a better fnew (< fold) was obtained after the

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 401

~ • • s ° **g

)::-,. , _as SSS

1, , \ 1.- / / -2
• • . o •

• l s m
11 "~ , , ir

l! •
:~ c S

. t

x ~
0 ^

X
X*

Figure 3. Geomet ry of a nonconvex min imiza t ion problem.

I

x 1

region [x~, Xl] was stored. When the region is finally selected for processing, we
can at least use the same lz (x) to remove a subregion [z~, min{x~, xl }], where zg
is the solution of It (z) = fnew.

Note that the lower f is, the bigger the subregion [z0, x~] that might be discarded.
Thus in the algorithm development, we should try to reduce f as fast as possible.
Intuitively, LBF's may improve our chance of getting a better point, which is a
point with lower function value than the current f . To see this, let us examine the
geometry of a univariate nonconvex minimization problem with a unique global
min imum point z* as shown in Figure 3. Let q5 denote the convex envelope of the
given function f . Then

arg min ~b = arg min f ~ (3.1)
[xo,~l] [~o,xl] = z*,

according to the result of convex analysis [10].
Consider the intersection point Y~ of the two tangent lines of if, ll and/2, from

both end points. Apparently, Y~ is closer to x* than any end points. If f has a
reasonable large basin for z* and .~ is close enough to x*, then very likely ~ will
fall into that basin. Of course, for a general nonconvex minimization problem, ll
and/2 are not available, since computing ~b is at least as difficult as solving the
original problem. However, the left and right LLBF's (It and It) can be considered
as the approximations of ll and Iz. Even when they are not good approximations,
their intersection point may still not be too far away from ~, if they are generated
in the same way and have fairly consistent approximation errors. In other words,
we may have a good chance to locate a better point when using both left and right
LLBF's.

For a problem with multiple global minimum points, we might have different
cases. For the case depicted in Figure 4, ~ could be regarded as a good point to

402 XIAOJUN WANG AND TS-SHUAN CHANG

O

!

X o

Figure 4. A good point to divide a region.

f

" ' \,

• • ,°11 ~

• • #•

!

divide the region into two subregions. For more complicated cases, further region
division might also lead the problem in a small subregion to the first case. In short,
even though we do not know in advance which case we might encounter, it seems
still worthwhile to try such a strategy.

! ! To implement the idea, let [x0, xl] denote the remaining subregion that comes
from [x0, X l] after the left and right LLBF operations have been performed (suppose

! ! [Xo, xl] is not empty). Then we divide [X~o,X~] into two subregions [z~, ~] and
[~,x~], saving ll(x) for [x~,5~] and It(x) for [:~,x]]. Note that we may have a
possible improvement of ce by It(~) (=/r(x)) . Note also that even though there
is a chance that ~ is a better point, we will not evaluate f(:~) right away. This is
becuase the LLBF gives us the function value at ~ when the procedure continues.
By this way, we can save the number of function evaluations.

Based on the foregoing discussion, we have our basic algorithm, which stops
when all the remaining intervals are shorter than 5, a specified accuracy.

Algorithm 1: Basic algorithm

Let ~P and Q be collections of subregions of [a, b]. Initially, ~P is a finite partition
of [a, b] and Q is empty. Denote oLi : e s t m i n f , where Di E 7 ~.

D~

Step 1. Get D E 7 ~ with ~ : est rain f ~- min{oq, ~2, '" "} and the corresponding
D

LLBF of f .

Step 2. Use the corresponding saved LLBF to shrink D, still denoting the remaining
region by D. If D is empty, go to Step 1; otherwise go to Step 3.

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 403

Step 3. If the size of D < 6, store D into Q, save the corresponding LLBF, go to
Step 1; otherwise go to Step 4.

Step 4. Get the other side LLBF, update a and f , use the LLBF and] to shrink D.
If D = O, go to Step 1; otherwise go to Step 5.

Step 5. If the size of D < 6, store D into Q, save the corresponding LLBF, go to
Step 1; otherwise go to Step 6.

Step 6. Compute the intersection point :~ of left and right LLBF's. Divide D into
two subregions, D1 = [x0,~] and D2 = [:~,Xl]. Update a if Iz(~) < a. If
0 < ~ - x0 < 6 or/and 0 < Xl - ~ _< 6, store D1 or/and Dz into Q, save the
left or/and right LLBF, else store D1 or/and D2 into T', save the corresponding
LLBE

Step 7. If min{oq, o~2,.-. } > f - e or T' = 0, STOP; otherwise go to Step 1.

Numerical tests indicate that the performance of the basic algorithm is consistent
with our intuition. It can eliminate big regions quickly. However, it is not efficient
for a small region. For a small region, the slope of the LLBF is close to the derivative
of the function; and thus the above technique is close to a gradient method. It is
well known that the rate of convergence of a gradient method is only linear. In
summary, the basic algorithm serves very well for the purpose of the global phase
to eliminate large regions and to find a function value as low and as fast as possible.
Nevertheless, efficient algorithms need to be developed for the local phase to search
for e-global minima from a small region which possibly contain a global solution.

4. An Improved Algorithm

4.1. ALGORITHM DEVELOPMENT

As mentioned, it seems that an efficient algorithm should consist of a global phase
and a local phase. As discussed, the basic algorithm can be used in the global phase.
Thus, after the global phase is done, we have a collection of small subregions stored
with their LLBF's for either one or both sides.

Note that the final f at the end of the global phase is typically lower than those
f ' s at the time such subregions were stored. By using the lower value f and the
stored LLBF's, we expect that the stored subregions can be further shrunk or simply
removed. Then, at the end of the global phase, we should use the final f from the
basic algorithm and the stored LLBF's to further shrink or eliminate such small
subregions.

In the local phase, it seems favorable to use local minimization algorithms to
find an e-global minimizer, since these local methods can typically speed up the
computation considerably. Let us consider the LLBF-based globally convergent
superlinear rate local algorithm in [4]. Figure 5 illustrates graphically how the

404 XIAOJUN WANG AND TS-SHUAN CHANG

f'(k)

xo xl x , /

Figure 5. A local minimization algorithm and its expansion.

local minimization procedure works and why it can be blended into a global
optimization algorithm in a natural manner.

Assume that we start from a point x0 such that f'(xo) < 0. We use left LUBF's
to approach a local minimizer x = r, and left LLBF's to bracket the local minimizer
r to be the global minimizer in [x0, 21]. We can further expand rightward to a larger
interval which contains the local minimizer as its global minimizer.

Note that even though we can find a local minimizer in a small subregion, and
verify it is an e-global minimizer in its neighborhood, the local minimizer may
be not an e-global solution. Thus the computation effort of searching for a local
minimizer is wasted even with fast convergence algorithms. When f is below the
local minimum, the LLBF of f may have a good chance to remove a larger part
of or even the whole subregion. In the case that f is above the local minimum,
the function value provided by the LLBF of f at one end point may even improve
f , since it gives us more direct information on the function value over the current
subregion (while the LLBF of f ' cannot). Because we do not know in advance
whether or not a subregion contains a global solution, we will use the LBF's of
f and f ' alternately. From our numerical testing experiences, this provides an
efficient strategy for dealing with small subregions.

Let Ix0, Xl] be a small subregion, i.e., 0 < Xl - x 0 < (f, 6 > 0 is a small number.
The major steps of the local phase by using one-side LBF's, say, left LBF's, are as
follows.

Step 1: Get left LLBF of f on [x0, x 1 l; use the technique described in Section 3 to
shrink the region and still denote the remaining region by [xo, xl]. If [x0, Xl]

e
is empty or its length < ~-~, where m is the slope of the LLBF of f over

[x0, xl], STOP; otherwise go to Step 2.

Step 2: Get left LBF's of f ' on [x0, xl]; use the technique explained later to shrink
the region; and still denote the remaining region by [x0, Xl]. If [x0, xl] is empty

e
or its length < ~-~, STOP; otherwise go to Step 1.

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 405

To present how Step 2 is carried out, note that the usage of the LBF's of ff is
different from that of a LLBF of f . From the LBF's of f t , we can decide a subregion
of [xo, xl] on which f is either nondecreasing or nonincreasing. This implies that
the subregion cannot contain a local minimizer and thus can be removed. We shall
demonstrate how this can be done for all possible cases below.

To be specific, denote the LBF's of f ' by ld(x) and Ld(x) and the estimations
of min and max of ff by dl and du for a given region [xo, Xl], i.e.,

Id(x) <_ f ' (x) <_ Ld(x), (4.1)

dt <_ i f (x) < du, x e Ix0, Xl],

Id(:c) = f f (:cO) + md(x - x0),

Ld(x) = f '(xo) + Md(x -- xo).

(4.2)

(4.3)

(4.4)

Case 1. The whole region can be deleted.
(1) If dz _> 0 or du < O, then f(:c) is monotonic on [:co, :cl). Since the function

values at the end points are taken care of by either f or the neighbor subregions,
the whole region [xo, Xl] can be discarded.

(2) For the case dt < 0 < du, let ll (x) be the stored LLBF over [~o, Xl] (the region
before stored, so Y:o <__ xo) with slope ml (ml < 0) and f0 = f(xo) = ll(~0).
Note that the straight line I2(x) with slope m2 = min{ml, dr} and passing
through (xo, f (xo)) is also an LLBF of f over [xo, Xl]. If

Ay ~ Iraqi(x0 - ~o) + Im21(x~ - :co) ___ f0 -] + e, (4.5)
then

f(:c) >_ fo
>_fo
>_fo
= f o - A y

thus [Xo, Xl]

+ , ~ 1 (: c - ~o)

q- ml(Xl -- xo) q- ml(xo -- if;o)

+ m2(xl - xo) + ml (xo - ~o)

Vx ~ [x0, Xl], (4.6)

can be removed. At the time of removing the whole region,
f (:co) should be evaluated and checked since (x0, f (x0)) might be an e-global
solution; save (xo, f (x o)) i f f(:co) <__ f + e.

Case 2. Part of the region can be deleted.
If the situation is not as in case 1, then d t< 0 < du and Ay > f0 -- f + e. Part

of the region can be removed, depending on different cases:
(1) m d >__ 0

In this case, we must have ff(xo) < 0. Otherwise m d > 0 and ff(xo) > 0
implies dz = estmin[zo,z~] ff > 0. Let XM be the point satisfying La(x) = O.
Obviously i f (x) < 0 for :c E [xo, :cM]; [:co, XM] can be deleted: xo +-- :cM. If
m d > 0, let :cm be the point satisfying Id(x) = O. I f x m < Xl, ff(:cl) > 0 for
:c E [Xm, :cl], [Xm, 371] can be deleted: Xl ~ Xm.

406 XIAOJUN WANG AND TS-SHUAN CHANG

(2) m d < 0
(i) / l (x0) _> o

Since f ' (x) >_ 0 for x E [x0, xm]; [x0, Xm] can be discarded, i.e., xo ~-- Xm.
If M d < 0 andxM < Xl, f ' (x) <_ O f o r z C [XM, Xl], [XM, Xl] canbe
discarded, i.e., xl +-- XM.

(ii) f ' (xo) < 0
We must have M d > 0; otherwise M d <_ 0, f ' (xo) < 0 implies du =
estmax[~0,xt] < 0. In this case, f ' (x) < 0 for x C Ix0, XM]; [X0, XM] can
be discarded: xo e-- xM.

There is one particular case that needs to be taken care of before we proceed the
major steps of the local phase. If f ' (xo) = 0 (or close to zero), dl < 0 < du, and
f (xo) = f (or close to each other), then both steps will fail to shrink the region.
For this rare case we apply the technique used in the global phase (even when
Ax = Xl - x0 _< 5). In other words, we will get both left and right LLBF's of f
over the region. By this way, either the whole region is removed or it is divided
into two subregions.

Algorithm 2: An improved univariate global optimization algorithm

Let 7 ~ and Q be collections of subregions of [a, b]. Initially, ~P is a finite partition
of [a, b] and Q is empty. Denote o~i = est min f , where Di E 79 (in Phase I) or

Di
Di C Q (in Phase II). In Phase II, "df-f-flag" is a flag; "df-f-flag = 0" indicates the
process of major step 1 and "df-f-flag = 1" the process of major step 2.

Phase I: The global phase

Step 1. Perform the basic algorithm for a given 6.

Step 2. Apply the above procedure to all the elements of Q once, without region
decomposition.

Phase II: The local phase
While Q is not empty, do:

Step 1. Get D = [xo, xl] E Q with a = min{c~l,a2, . . .} and the corresponding
f0, calculate Ay in (4.5).

Step 2. If Ay < f0 -- f + e, check f(z0): if f (xo) <_ f + e, save (xo, f (zo)) into
X*, and go to Step 1; otherwise go to Step 3.

Step 3. If df-f-flag = 1, go to Step 4; otherwise go to Step 7.

Step 4. Generate left LBF's for f l (z) . If dt >_ 0 or du < O, discard the whole
region and go to Step 1; otherwise go to Step 5.

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 407

Step 5. If If'(zo)l <_ e, dt < 0 < du and fo -] _< e, apply the technique of the
global phase once, go to Step 8; otherwise go to Step 6.

Step 6. Shrink D by the LBF's of f t . Compute mE, update Ay, and go to Step 8.

Step 7. Generate a left LLBF for f (z) . Update oL, f0, f and ml ; if the slope of
the LLBF is nonnegative or o~ > f - e, go to Step 1; otherwise go to Step 8.

Step 8. df-f-flag +-- 1 - dr-f-flag; go to Step 2.

Phase IIl: Check the global solution
Check X* and get the global solution.

4.2. CONVERGENCE

THEOREM 4.1. (Convergence infinite steps).
Assume that f (x) is continuously differentiable, the slopes of linear bounds of

f and f l are bounded by a constant G over any subregions of S, and e > 0 is the
accuracy tolerance. Then Algorithm 2 can find an e-global minimum within finite
steps.

Proof We prove the theorem by showing that both Phase I and Phase II will
terminate within finite steps.

1. Phase I (the global phase) terminates within finite steps.
The stop criterion of Phase I is that every subregion in 7 9 is either removed

or shrunk to one or more subregions with its (their) length(s) not longer than a
small positive number 6 (and they will be stored in Q).

Let D = [z0, Zl] be an arbitrary subregion in 79. There are three cases after
each iteration: (1) D is totally discarded; (2) D is shrunk to a subregion not
longer than 6 (and is stored in Q); (3) D is divided into two subregions. It is
enough to consider the third case.

We show that after a decomposition of D, the length of each subregion, Ai,
i = 1, 2, will satisfy Ai < (Zl - z0) - c, where c is a positive constant.

Denote left and right LLBF's of f (x) by
lt(z) = ml (z - zo) + f (zo), (4.7)
IT(z) = mT(z -- Xl) + f (x l) . (4.8)

By the definition of an LLBF, mt and mr satisfy the condition
max{Imzl, Iraqi} <_ G, (4.9)

where G is a constant.
For case (3) we have mt < 0 and mr > 0. For simplicity, we assume that

D is now divided into [z0, 97] and [5, Zl], where :~ is the intersection point of
It and It, without first using the LLBF's to shrink the region. This is without
loss of generality, since the shrunk subregions are always smaller than original
ones.

408 XIAOJUN WANG AND TS-SHUAN CHANG

Let c = ~ . If one of subregions, say, [zo, ~], is shrunk so little (compared

with [xo, xl]) that A1 = :~ - xo > (Xl - xo) - c, then A2 = Xl - :~ _< c, since
A1 + A2 = xl - xo.

Since m,1 < 0 and mr > 0, it is implied that f (x) > lr(k) (= lt(2:)) for all
x E [xo, Xl] and

A/r & / r (x l) - lr(3C) = f (x l) - / r (x)

= m r (z 1 - ~) < G c = E,

we have
f (x) > lr(c?) > f (x l) -- e >] - - c, Vx ~ [zo, xl],

(4.1o)

(4.11)

which means that the whole region can be discarded.
Therefore, after a decomposition, D is either totally removed or divided

into two subregions, whose lengths satisfy Ai < z l - z0 -- c. Since [x0, zl]
is finite (S = [a, b] is finite) and c is a constant, D eventually will either be
removed after decomposit ion or become some elements of Q (i.e., subregions
with length < ~) within finite steps. Since this is true for any element of 79,
Phase I will terminate in finite steps.

2. Phase II terminates within finite steps.
After Phase I, Q contains finite elements. Phase II terminates when Q is

empty, i.e., all subregions in Q are removed. The condition for a subregion
D = [z0, zl] C Q to be removed is that (4.5) is satisfied. Since (4.5) is satisfied

e
if A x = xl - x0 < ~ , it is enough to show that D will be shrunk to one or

e
more subregions with length < ~ in finite steps. In Phase II, a typical iteration

includes two major steps as described in Section 4.1. We show that the length
of D will be reduced at least by a constant c after each iteration.

Without loss of generality, suppose the LBF's o f f ' are generated first.
Rewrite (4.2), (4.3), and (4.4)

dl <_ f ' (x) <_ du, x E [20, Xl] , (4.2)

Id(x) = md(x -- xo) + f t (x0) , the LLBF of f t over Ix0, xl], (4.3)

Ld(x) = Md(x -- xo) + f'(xo), the L U B F of f ' over [x0, 21], (4.4)

where constants dt and du are estimations of rnin and max of f t on [xo, xl].
Suppose dt < 0 < du (otherwise the whole region can be discarded). We

can, just considering the cut on the left side, at least reduce the region [xo, xt]

f '(xo) I ~ 1 f'(xo) f'(xo) i
b y x M - - x o - - Ma - - - - O r X m - X o - md ---- ~ .

(11 If If ' (xo)l > e, min , md > ~ = c; i.e., the major step

on f~ already provides us with the required reduction.

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 409

If I f ' (xo) l <_ e, we consider the alternative step on f . Denote
] !

l l (x) = m l (x - - Xto) + f(XlO), the LLBF of f o v e r [x0 , X l] , (4.12)
where [x~, x~] is the region after a cut made by using LBF of f ' , i.e., [x~, x'l] C
[;720, Xl]. Suppose rat < 0; otherwise the whole region can be removed.

If f(x'o) - f > e, then we have a cut

. , f(Xlo) - f f (x ' o) - f e
.7,7 0 - - X 0 mz iral I > ~ = c, (4.13)

i.e., the major step on f provides us with the required reduction.
If 0 < f(x'o) - f < e and If'(0)l ___ *, it is possible that both major

steps will not provide us with the required reduction. In this case, we apply the
technique used in the global phase once, as mentioned in Step 5 of Phase II.
After that, D is either totally discarded or divided into two subregions whose

lengths are less than (Xl - x0) - c, where c = ~ .

Therefore, in any cases, the region will be cut by at least a constant c after
each iteration. This implies that any D C Q will be shrunk to one or more

e
subregions with length < c = ~ and thus is removed from Q in finite steps.

Since Q contains finite elements, Phase II will terminate within finite steps.

5. Numerical Results

We have tested our global optimization algorithm on the following one-dimensional
multi-extremal functions from [1 1].

10x
f l (x) = sin(x) + sin(--~-) + In(x) - 0.84x, 2.7 < x < 7.5 (5.1)

f2(x) = sin(z) + sin(2x -~-), 3 .1< ;72<20 .4 (5.2)

5

f3(x) = - ~ s in ((/+ 1)x + i),
i=1

- 1 0 < ;72 < 10 (5.3)

f4(z) = (x + sin(z))e -x2, - 1 0 _< ;72 < 10 (5.4)

lO 1

i=1

0 < x < 10 (5.5)

The ki, ai, and ci are parameters chosen and varied to create different problems.
f r (x) has the same function form as fs(x). The parameters used are the same as
those in [1 1]. f7 corresponds to minimizations of 100 Shekel functions (fs) with
random coefficients 0 _< ai < 10, 1 < ki < 3 and 0.1 < ci <_ 0.3.

4 1 0 XIAOJUN WANG AND TS-SHUAN CHANG

Table I. Comparison for 1-D test problems

function S-LLB N-LLB O-LLB

fl 12 12 19

f2 18 18 24

f3 73 73 94

f4 13 19 35
f5 36 37 40

f6 32 36 71

f7 29 40 81

Zill Zil2 Strong Pijav Brent B~ish

33 29 45 462 25 120

37 38 442 448 45 158

125 165 150 3817 161 816

35 34 98 376 229 83
42 41 102 280 294 484

45 44 69 624 492 325

32 44 94 360 376 422

The column headings correspond to the following algorithms:
(1) S-LLB: Algorithm 2 with special LBF's.
(2) N-LLB: Algorithm 2 in this paper.
(3) O-LLB: The algorithm in [3] with piecewise LLBF's.
(4) Zil 1: The P* algorithm of Zilinskas reported in [11].
(5) Zil2: The algorithm of Zilinskas reported in [11].
(6) Strong: The algorithm of Strongin reported in [I 1].
(7) Pijav: The algorithm of Pijavskij and Shubert reported in [11].
(8) Brent: The algorithm of Brent reported in [11].
(9) Batish: The algorithm of Batishchev reported in [11].

The performance of our algorithm is compared with the algorithms in [3] and
other one-dimensional algorithms reported in [11]. To be consistent, the same
stopping criterion e = 10 - 6 is used. In Table I, our test results are summarized in
column N-LLB (using linear bounds constructed by the general procedure) and S-
LLB (using special linear bounds based on the additional information of the given
problem). In column O-LLB the best results of the algorithm in [3] are presented.
The other columns correspond to those in [11]. For LBF methods, each entry is
the total number of function, derivative, and LBF evaluations. For other methods,
it refers to the total number of function evaluations.

From the results, we can see that our algorithm has high potential of success.
Note that in O-LLB piecewise LLBF's are used, which, of course, cost higher
computation burden. Also, for f4 and f5 the LLBF's are obtained by treating each
iterm as a generic term, instead of using the general product and composite forms.
To see the effect due to using additional information based upon the given problem,
in column S-LLB, we use the special one-piece LLBF's for f4 though f7. The result
indicates that the specialized LLBF's may have quite an impact, depending upon
the problems.

6. Discussion

In this paper, we present a method to find improved LBF's for factorable functions
over n-dimensional boxes. We developed a univariate global optimization algo-
rithm by applying LBF's to a given function and its derivative. The algorithm is
proven to converge in a finite number of iterations in order to find e-global minima.

IMPROVED LINEAR LOWER BOUNDING FUNCTIONS 411

Numer ica l testing indicates some improvement over another LBF-based global

a lgor i thm and the high potential of our algorithm.

Global opt imizat ion for n -d imens iona l cases is obviously more complicated.
To extend our method to n-d imens iona l cases, not all the techinques which are
efficient for one-dimensional cases can be preserved. By exploring the propert ies
of LLBF, we have recently deve loped a three-phase algori thm for mult ivariate

p rob lems along the same direction. The results are reported in [12].

References

1. M. Bromberg and T. S. Chang, One Dimensional Global Optimization Using Linear Lower
Bounds, Recent Advances in Global Optimization, eds. C. A. Floudas and P. M. Pardalos,
Princeton University Press, 1992, pp 200--220.

2. M. Bromberg and T. S. Chang, Global Optimization Using Linear and Convex Lower Bounds,
Technical Report No. UCD-ECE-SCR-93/5, October 1993.

3. T. S. Chang and C. L. Tseng, A New Linear Lower Bound and One Dimensional Global Opti-
mization, Technical Report No. UCD-ECE-SCR-94/2, January 1994.

4. T. S. Chang and X. Wang, Univariate Optimization Using Linear Bounding Functions: A Frame-
work of developing algorithms with properties such as global convergence, supeflinear/quadratic
rate, function and Hessian evaluation free, working paper.

5. C. A. Floudas and P. M. Pardalos, Recent Advances in Global Optimization, Princeton University
Press, 1992.

6. R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Springer-Verlag, 1990.
7. G.P. McCormick, Converting General Nonlinear Programming Problems to Separable Nonlinear

Programming Problems, Technical paper serial T-267, Institute for Management Science and
Engineering, The George Washington University, Washington DC, June 1972.

8. G. P. McCormick, Computability of Global Solutions to Factorable Nonlinear Programs: Part I
- Convex Underestimating Problems, Math. Prog. 10 (no. 2), April 1976, pp 147-175.

9. H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Ellis Horwood
Limited, 1988.

10. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
11. A. Torn and A. Zilinskas, Global Optimization, Springer-Verlag, 1989.
12. X. Wang and T. S. Chang, A Multivariate Global Optimization Algorithm for Factorable Func-

tions Using Linear Bounding Functions, submitted.

